Fuel Cell
Mobile Electric Power

Presented to:
10th Quarterly Review of the PEBB Program
May 7, 1997

Rob Privette
Babcock & Wilcox
(330) 829-7370

All rights reserved. No part of this presentation may be reproduced in any form or by any means without
Agenda

- Overview of fuel cell technology
- DARPA / Army Mobile Electric Power Program
- Mobile fuel cell system power conditioning
Fuel Cell Operating Principal

Oxidant - Air

<table>
<thead>
<tr>
<th>Cathode</th>
<th>Electrolyte</th>
<th>Anode</th>
</tr>
</thead>
</table>

Fuel

DC Electric output

External Load

All rights reserved. No part of this presentation may be reproduced in any form or by any means without permission in writing from Babcock & Wilcox.
Fuel Cell Development Expenditures

- Planar SOFC: Intermediate Development
- Tubular SOFC: Advanced Development
- PEM/MCFC: Demonstration
- PAFC: Early Commercial

Time

$
Attributes of Fuel Cells

<table>
<thead>
<tr>
<th></th>
<th>AFC</th>
<th>PAFC</th>
<th>PEMFC</th>
<th>MCFC</th>
<th>SOFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolyte</td>
<td>KOH</td>
<td>Phosphoric Acid</td>
<td>Sulfonic Acid Polymer</td>
<td>Molten Carbonate Salt</td>
<td>Yittria stabilized Zirconia</td>
</tr>
<tr>
<td>Temperature</td>
<td>100°C</td>
<td>200°C</td>
<td>100°C</td>
<td>650°C</td>
<td>850°C</td>
</tr>
<tr>
<td>Fuel</td>
<td>H₂</td>
<td>H₂</td>
<td>H₂</td>
<td>H₂/CO</td>
<td>H₂/CO</td>
</tr>
<tr>
<td>FC Efficiency (H₂ fuel)</td>
<td>60%</td>
<td>55%</td>
<td>60%</td>
<td>55%</td>
<td>55%</td>
</tr>
<tr>
<td>Power Density</td>
<td><5 kW/ft³</td>
<td>~3 kW/ft³</td>
<td>~40 kW/ft³</td>
<td><5 kW/ft³</td>
<td>~30 kW/ft³</td>
</tr>
<tr>
<td>Cell Life</td>
<td>5 yrs</td>
<td>5 yrs</td>
<td>5 yrs</td>
<td>3 yrs</td>
<td>5 yrs</td>
</tr>
<tr>
<td>Start-up</td>
<td>Fast</td>
<td>Moderate</td>
<td>Fast</td>
<td>Moderate</td>
<td>Slow</td>
</tr>
</tbody>
</table>

All rights reserved. No part of this presentation may be reproduced in any form or by any means without permission in writing from Babcock & Wilcox.
 MEP Generator Program
MEP Program Description

- Four-year program sponsored by DARPA and U.S. Army Research Office

- Application
 - 10 kWe mobile generator for Army Lightweight Multipurpose Shelter

- Key project elements
 - Compact, lightweight system for mobile applications
 - Fuel processor development (JP-8, DF-2)
 - Power system integration with SOFCs
 - Demonstration of 5 - 10 kW SOFC power system
DARPA / Army MEP
Generator
Program to demonstrate a multi-kWe planar SOFC mobile electric power generator using DOD logistics fuel

- Phase 1: Developed preliminary system design based on steam reforming (complete)
- Phase 2: Demonstrated logistics-fueled SOFC MEP breadboard system (complete)
- Phase 3: Demonstrate a multi-kW integrated SOFC MEP generator. Design a prototype 10 kW SOFC generator (in-progress)
MEP System Test Facility

Purpose:
- Long-term integrated system testing
- Prototype product development

B&W Research Center, Alliance, Ohio
SOFCo Patented CPn Design

- Staged oxidation provides enhanced electrical efficiency
- New manifold design provides improved fuel utilization
- kW-Class stack demonstrations
Multi-Thousand Hour Stack Endurance Demonstrated

Voltage/cell, V

Time, Hrs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 1000 2000 3000 4000 5000 6000 7000 8000

All rights reserved. No part of this presentation may be reproduced in any form or by any means without permission in writing from Babcock & Wilcox.
Stack Performance

Stack Performance doubled in the last year

Volts/Cell, V

Temperature: 850°C
Electrolyte: 170 µm

Current Density, A/cm²

Jan. 96
Apr. 97

1.38 ohm-cm²
10x10 cm
800°C

3.06 ohm-cm²

1.68 ohm-cm²

2.27 ohm-cm²

1.34 ohm-cm²

All rights reserved. No part of this presentation may be reproduced in any form or by any means without permission in writing from Babcock & Wilcox.
MEP Accomplishments

- **Phase 1**
 Developed layout for Army MEP, (complete)
 Demonstrated bench-scale sulfur-tolerant steam reforming

- **Phase 2**
 Demonstrated integrated system of (complete)
 JP-8 fuel processor and fuel cells,

 Demonstrated conversion of JP-8 to hydrogen-rich gas for 400 hrs using compact 10 kWe partial oxidation fuel processor.
MEP Phase 3

- Technology Readiness Demonstration (9/97)
 - Continuous operation of 10 kWe JP-8 fuel processor for 100+ hrs
 - >100 hr operation with on-line maintenance
 - Fuel conversion efficiency of 75% (HHV)

- Multi-kW Generator Demonstration (Aug ‘98)
 - Net system efficiency >30%
 - Transient and load following operation
Mobile fuel cell system power conditioning

- **DC/AC Conversion**
 - Army application requires
 - 10 kW AC at 0.8 power factor
 - 60 Hz AC at 120 V 1-Phase and 240 V 1-Phase, 3-wire
 - Fuel cell module configured for 50 VDC

- **Dual Fuel Cell/Battery Source**
 - Start-up, Back-up
 - Peaking service
Mobile fuel cell system power conditioning (Cont)

Electrical loads
- Motors, Generators, Motor drives
- Actuators/Actuator drives
- Energy storage
Mobile fuel cell system power conditioning (Cont)

- Steady-state electric output
 - Frequency variation:
 - 2% bandwidth over 30 sec, 3% over 4 hour

- Voltage variation under load
 - Less than 2% over 30 sec, 3% over 4 hr

- Waveform deviation factor
 - Less than 6%

- Individual harmonic deviation factor
 - Less than 3%
Mobile fuel cell system
power conditioning

(Cont)

- Transient electric output
 - Recovery from application of rated load
 - Less than 20% reduction in voltage
 - Less than 3% reduction in desired frequency
 - Less than 3 seconds
 - Recovery from rejection of rated load
 - Application of motor load
 - Less than 35% decrease in voltage
 - Less than 5 seconds
Mobile fuel cell system power conditioning (Cont)

- **Physical**
 - Volume - 10 kW/ ft³
 - Weight - 0.5 kW/ lb

- **Environment**
 - Thermal
 - Shock
Fuel Cell/ PEBB Demonstration

Fuel Cell DC Supply

PEBB Demonstrator

60Hz Inverter
400 Hz Inverter

60Hz Motor Controller
400Hz Motor Controller
DC Motor Controller
3 Phase Rotary Actuator
Single Phase Linear Actuator

DC to DC Buck Converter
DC to DC Boost Converter

All rights reserved. No part of this presentation may be reproduced in any form or by any means without permission in writing from Babcock & Wilcox.